Exercise 42

If $g(x)=x / e^{x}$, find $g^{(n)}(x)$.

Solution

Evaluate the first derivative using the quotient rule.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left(\frac{x}{e^{x}}\right) \\
& =\frac{\left[\frac{d}{d x}(x)\right]\left(e^{x}\right)-\left[\frac{d}{d x}\left(e^{x}\right)\right](x)}{e^{2 x}} \\
& =\frac{(1)\left(e^{x}\right)-\left(e^{x}\right)(x)}{e^{2 x}} \\
& =\frac{1-x}{e^{x}}
\end{aligned}
$$

Evaluate the second derivative using the quotient rule again.

$$
\begin{aligned}
g^{\prime \prime}(x) & =\frac{d}{d x}\left[g^{\prime}(x)\right] \\
& =\frac{d}{d x}\left(\frac{1-x}{e^{x}}\right) \\
& =\frac{\left[\frac{d}{d x}(1-x)\right]\left(e^{x}\right)-\left[\frac{d}{d x}\left(e^{x}\right)\right](1-x)}{e^{2 x}} \\
& =\frac{(-1)\left(e^{x}\right)-\left(e^{x}\right)(1-x)}{e^{2 x}} \\
& =-\frac{2-x}{e^{x}}
\end{aligned}
$$

Evaluate the third derivative using the quotient rule again.

$$
\begin{aligned}
g^{\prime \prime \prime}(x) & =\frac{d}{d x}\left[g^{\prime \prime}(x)\right] \\
& =\frac{d}{d x}\left(-\frac{2-x}{e^{x}}\right) \\
& =-\frac{\left[\frac{d}{d x}(2-x)\right]\left(e^{x}\right)-\left[\frac{d}{d x}\left(e^{x}\right)\right](2-x)}{e^{2 x}} \\
& =-\frac{(-1)\left(e^{x}\right)-\left(e^{x}\right)(2-x)}{e^{2 x}} \\
& =\frac{3-x}{e^{x}}
\end{aligned}
$$

Therefore, recognizing the pattern,

$$
g^{(n)}(x)=(-1)^{n+1} \frac{n-x}{e^{x}} .
$$

